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The greater ease of rotation about the exocyclic C-C bond in 
triplet phenylcarbene implies that a reactive conformation can 
be achieved more readily than in the case of the singlet, which 
is in agreement with the observed relative intramolecular re­
activities. Moreover, reaction of the triplet might take place with 
no rotation about the bond to the carbenic carbon. The minimum 
energy planar conformation also has an odd electron in the plane 
of the ring, suitably oriented for reaction with a neighboring double 
bond. In order to attempt to determine the relative ease of the 
two modes of attack between the two cases, we performed model 
HF/STO-3G and HF/3-21G calculations of the attack of triplet 
methylene on ethene.24-26 In these calculations two modes of 
approach were considered (parts a and b of Figure 1). In the 
first case, the methylene p orbital is attacking the double bond, 
whereas the second type of approach involves attack by the a 
orbital, which lies in the methylene plane. The C-C forming bond 
was fixed at a distance of 2.0 A, typical for C-C partially formed 
bonds in transition structures. All other parameters were optim­
ized with a Cs symmetry constraint in both cases. Both sets of 
calculations suggest that attack by the in-plane orbital, as in Figure 
lb, is significantly preferred (by 16.7 kcal/mol at the HF/STO-3G 
level and by 21.6 kcal/mol at the HF/3-21G level). The related 

(24) No ab initio computational study of the addition of triplet methylene 
to ethylene has been reported in the literature. Dewar and co-workers25 used 
the semiempirical MINDO/2 procedure with an extension of the "half-
electron" method26 for calculations of triplet states. These calculations suggest 
that the initial approach of methylene to the alkene takes place symmetrically 
and that the carbene subsequently veers to one side of the double bond and 
attacks one of the ethylene carbon atoms to form the diradical. In the 
transition state, the carbon atom of the methylene moiety is at a distance of 
2.1 A from the closer ethylene carbon and 2.3 A away from the farther one. 
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94, 9095. 

(26) Dewar, M. J. S.; Hashmall, J. A.; Venier, C. G. /. Am. Chem. Soc. 
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1. Introduction 
The problem of adsorption of solute in liquid-filled pores has 

a number of important applications and is now being investigated 
intensively.1,2 In this work, the structural and thermodynamic 
properties of ionic solution enclosed within the charged micropores 
are studied by two different theoretical methods. A number of 
electrochemical systems can be modeled as a cylindrical capillary 
with a charge distributed on the inner surface, immersed in an 
electrolyte solution. This model has been used to explain elec-
trokinetic phenomena,3"11 to describe ion selectivity in certain types 
of ion-exchange resins,12 and to evaluate the activity of electrolyte 
within a capillary,13"17 which may be useful in engineering ap-
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structure, Figure Ic, is only 0.3 kcal/mol higher in energy. Thus, 
the minimum energy conformation of 5 has the exocyclic CH 
group already suitably oriented for intramolecular insertion in 
the double bond. This model is obviously somewhat crude, but 
the qualitative conclusions should persist even if a higher level 
of theory were employed. The geometry of approach implied in 
Figure lb resembles the transition structure, which Fueno and 
co-workers found from ab initio molecular orbital calculations 
(MRDCI/4-31G**//HF/4-31G**) for the analogous addition 
of triplet nitrene to ethylene.27 

Conclusion 
The calculations suggest that the rapid cycloaddition of a triplet 

methylene to a neighboring p bond results from the presence of 
the half-occupied in-plane u orbital, which directly attacks the 
p system and also makes rotation out-of-plane much easier than 
for a singlet arylcarbene. More extensive comparison of rotational 
barriers in aromatic reactive intermediates will be reported in due 
course.28 
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plications. In all these studies (except ref 16) the Poisson-
Boltzmann equation (sometimes in a linearized form) has been 
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Abstract: We have studied a simple electrolyte enclosed within a charged cylindrical capillary and in thermodynamic equilibrium 
with an external solution, using the grand canonical Monte Carlo technique. Ionic correlation functions and mean activity 
coefficients have been evaluated at several charge densities and concentrations, and for several choices of capillary radius. 
Comparison with the results of the Poisson-Boltzmann equation is presented for all these quantities. The latter approximation 
is, as noticed previously, reasonably accurate if 1:1 electrolyte is present in a capillary. Important qualitative and quantitative 
differences are noticed for 2:2 simple electrolyte, even for moderate surface charge densities. Due to the interionic correlations, 
there is much more simple electrolyte present in the capillary than predicted by the mean-field theory. This affects the distribution 
of counterions and especially the mean activity coefficient of the electrolyte. Our simulations show that, at low charge densities, 
the mean activity coefficient of the electrolyte decreases with decreasing radius of the pore, while the Poisson-Boltzmann equation 
predicts the opposite behavior. 
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employed to calculate the mean electrostatic potential and the 
ionic distributions inside the capillary. 

The validity of the Poisson-Boltzmann approximation has been 
the subject of several studies. In this context, the Monte Carlo 
simulations of planar18"21 and cylindrical double layers,22"26 which 
may serve as models for membranes, electrodes, or polyelectrolyte 
solutions, are valuable. The computer calculations indicate that 
the Poisson-Boltzmann equation describes adequately a 1:1 
electrolyte in contact with a charged surface, but it fails to predict 
the correct behavior when divalent counterions are present in the 
solution. One such example is given in our previous study,25 which 
models a DNA solution in the presence of 2:2 electrolyte. Though 
a similar conclusion about the validity of the Poisson-Boltzmann 
equation may be anticipated for the electrolyte in charged cap­
illaries, there are some differences between this and the planar 
system, which has been the most thoroughly studied to date. The 
most important difference is that one deals not with a single 
(isolated) electrical double layer, but rather with an electrical 
double layer that extends throughout a capillary, similar to the 
system treated in ref 20. In other words, the local ionic con­
centrations inside the pore may differ everywhere and substantially 
from the bulk values at a given, fixed chemical potential. The 
radius of a capillary is therefore an additional and important 
parameter of the model. 

In our previous work16 an approximate integral equation, known 
in the literature as the HNC/MSA equation,27 had been used to 
obtain the ionic correlation functions and the mean activity 
coefficient of the electrolyte inside the cylindrical pore. In this 
integral equation, which yields a rather accurate description of 
the interactions in the electrical double layer,25,28 the corrections 
to the Poisson-Boltzmann equation are evaluated within the 
mean-spherical approximation.29 The results of ref 16 give some 
additional evidence for the important role of the interionic cor­
relations in solutions of divalent ions. These interionic correlations 
are ignored by the Poisson-Boltzmann approximation. 

In order to measure accurately the ion-ion correlations and to 
evaluate the concentration of electrolyte enclosed within a cyl­
indrical capillary, we have used the grand canonical Monte Carlo 
technique. The chemical potential of the solution inside is fixed 
by the external reservoir of electrolyte with concentration cs at 
temperature T and chemical potential ii. This is a correct way 
to treat a system where no bulk phase is present explicitly.18 The 
behavior of both 1:1 and 2:2 electrolytes is examined in this 
calculation. The charge density of the inner surfaces, concentration 
of the external (bulk) electrolyte cs, and radius of the capillary 
are parameters of the model. 

The outline of this paper is as follows. In section 2, the model 
and the principles of the Poisson-Boltzmann equation and the 
Monte Carlo method are presented. Our numerical results are 
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Figure 1. Cross section through the model capillary. 

collected in the third section. The local concentrations of the ions 
are shown as a function of the position within the pore. From 
the average concentration of co-ions, <c_), and counterions, (c+), 
inside the cavity we can evaluate the exclusion parameter, or the 
mean activity coefficient of enclosed electrolyte. Of special interest 
are the variations of these quantities with the charge density and 
radius of the capillary. In both cases, our comparison indicates 
a breakdown of the Poisson-Boltzmann mean-field theory when 
2:2 electrolyte is present in the capillary. The predictions of the 
Poisson-Boltzmann equation are not only quantitatively but also 
qualitatively incorrect, as discussed below in section 4. 

2. Micropore Model and Methods 
The model used here is identical with that used in several previous 

articles,3"17 and it is shown in Figure 1. We choose the inner surface 
of the cylindrical capillary to be negatively charged with a charge density 

a = ze0/2ir(R + a/2)h (D 
where z is the number of elementary charges on the surface per length 
h and R is the radius of the cylinder within which the centers of the ions 
are distributed. The ions are charged hard spheres with a diameter a, 
so they can approach to the surface up to a distance a/2. The solvent 
is not included explicitly: it is viewed as a dielectric continuum of per-
mitivity «0er. The Poisson-Boltzmann equation for this system reads 

i d f # 1 
r dr[r dr J (2) 

pt = Z+C0Tt+(O) exp(-z+e0\pP) + z_e0n.(0) exp(-z_e0^/3) (3) 

where <p(r) is the mean electrostatic potential at a distance r, z^r, is the 
charge of the ion i, and «,(0) its number concentration at the position r 
= 0, where \p is chosen to be zero. This choice is only a matter of 
convenience, and if needed, the potential difference between the position 
r = 0 and the external solution can be evaluated.16 As usual, /T1 = ktT, 
where kB is the Boltzmann constant and T is the absolute temperature. 
The solution of this differential equation can be obtained numerically 
subject to the boundary conditions given by eq 4 and 5. Here, as before, 

di 
d7 

Tr 

0 

-ff/«o«r 

(4) 

(5) 

an iterative numerical technique, also called the "shooting method", has 
been applied to solve eq 2-5.30 The number densities n+(0) and n_(0) 
are related to the concentration of the bulk electrolyte «s (cs = ns/NA, 
where NA is Avogadro's number) by the equation «s

2 = n+(0)«_(0). 
The Poisson-Boltzmann approximation treats the ions as pointlike 

charges; it therefore ignores their size and, more importantly, their mu­
tual correlations. Computer simulations are free of these approximations, 
and if the problems of finite size of the system can be addressed properly, 
they provide essentially exact results for a given model. The grand 
canonical Monte Carlo method has proved to be very useful in studies 
of the electrical double layer. The main advantage is that by sampling 
at constant chemical potential, rather than concentration, the relevant 
bulk electrolyte phase is defined unambiguously.18,19,25 This is crucial in 

(30) Carnahan, B.; Luther, H. A.; Wilkes, J. O. Applied Numerical 
Methods; Wiley: New York, 1969. 
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Table I. Results of the Canonical Monte Carlo Calculations, for 1:1 
and 2:2 Electrolyte at a Variety of Concentrations of the External 
Electrolyte cs 

10.0 

run 

1 
2 
3 

4 
5 
6 
7 
8 
9 

10 
11 

a/(AsirT2) 

0.07U1 
0.1067 
0.1422 

0.03556 
0.07112 
0.1422 
0.03556 
0.03556 
0.03556 

0.03556 
0.03556 

R/nm 

1:1 
4.0 
4.0 
4.0 

2:2 
4.0 
4.0 
4.0 
2.0 
1.275 
0.85 

2:2 
1.275 
0.85 

W 
Electrolyte0 

39.41 
41.40 
30.26 

Electrolyte4 

35.27 
37.12 
38.33 
31.15 
30.84 
28.2 

Electrolyte1 

31.2 
34.5 

cs' 

0.0424 
0.0381 
0.0354 

0.0386 
0.0402 
0.0433 
0.0316 
0.0256 
0.0191 

0.052 
0.0402 

0,/[(C+)(C)Y" 

0.734 ± 0.01 
0.647 ± 0.01 
0.588 ± 0.01 

0.705 ± 0.02 
0.530 ± 0.01 
0.376 ± 0.01 
0.592 ± 0.01 
0.525 ± 0.01 
0.49 ± 0.01 

0.87 ± 0.01 
0.80 ± 0.01 

to 

'E 

E 
^ 

°cs = 0.1002 mol dm"3, y±f = 0.917 (from ref 38). »cs = 0.0515 
mol dnr3, y±s = 0.230 (from'ref 38). cc, = 0.1240 mol dm"3, 7± s = 
0.137. 

our study, since the electrical double layer extends throughout the ca­
pillary. An extensive description of the method is given in ref 18 and will 
only be summarized briefly here. The simulation procedure consists of 
two steps. The first step is canonical, and a randomly chosen ion is moved 
into a new random position somewhere in the cavity. The new position 
is accepted with the probability /tf, 

/ y = min(l, YexpHUj-U,)]) (6) 

where U1 is the configurational energy of the state i, and K = I . The 
second step consists of either an attempted deletion of a neutral pair of 
randomly chosen ions or the attempted insertion of particles in some 
random positions. The transition probability from the state i with a 
number of co-ions Nf (N1

+) to the state j where Nf = Nf + 1 (and N1
+ 

= N* + 1) is given by combination of equations 6 and 7. In eq 7, y±i 

T±.s 
N+N. 
NJN} (7) 

is the mean activity coefficient of the bulk electrolyte, where N+ = TV. 
and the concentration c, = N./(NATR2h). 

In computer simulations of the anisotropic systems, the interactions 
of each particle with the part of the system outside the central cell must 
be included in the calculation in order to obtain the results for an ef­
fectively infinite thermodynamic system. One method has been suggested 
in previous simulations,18 explicitly for a system similar to ours, by 
Rossky and co-workers.24 With this method, the interaction outside the 
central cell is treated in the "mean-field" way, using the local concen­
trations of particles averaged over all previous configurations in the 
central cell to evaluate the corrections to the energies U1 and U1. The 
average number of particles and other control parameters of the simu­
lations are displayed in Table I. 

3. Results 
All results in this section are for water solutions at T = 298 

K, where the relative permittivity of the system is e0er = 78.33. 
The distance of closest approach "a" is chosen to be 0.425 nm 
to match that used in earlier computations. In Table I, the Monte 
Carlo results for the electrolyte concentration inside the cavity, 
C1' = <c_), are displayed for at several surface charge densities 
a and for various choices of the radius of capillary. Before dis­
cussing the thermodynamic properties, it is interesting to see the 
spatial distribution of co-ions and counterions inside the capillary. 
These are given in Figures 2 and 3. Figure 2 shows clearly that 
the results of the Poisson-Boltzmann and Monte Carlo calculations 
for 1:1 electrolyte (run 1) are in good agreement for this range 
of concentrations and charge densities, as observed before.18'25 

For divalent ions, the situation is quite different, as shown in 
Figure 3. Here the Poisson-Boltzmann approximation under­
estimates the ionic concentrations next to the charged surface. 
Strong correlations between the first layer of counterions and the 
co-ions make the concentration of the co-ions in the cavity con­
siderably higher than predicted by the mean-field theory. To a 
certain degree, this is expected from previous simulations,25 but 

0 .01 -

o.ooi 
0.0 1.0 2.0 

r/nm 
Figure 2. Local concentrations of co-ions (solid circles) and counterions 
(open circles) for 1:1 electrolyte inside the capillary, obtained from a 
Monte Carlo simulation and from the Poisson-Boltzmann equation (solid 
lines). The data is for run 1. 

10.0 

E 

0.01 

0.001 
4.0 

Figure 3. Same as Figure 2, but for 2:2 electrolyte inside the capillary. 
The data for run 6. 

the effect here has more dramatic consequences for the exclusion 
coefficient and for the mean activity coefficient of the enclosed 
electrolyte. 

The equilibrium distribution of ions between a cavity and an 
external solution is determined by the condition that the total 
chemical potentials on both sides are equal.31'32 In general, the 
pressure on one side may be different from that on the other and 
a potential difference between two solutions is present. The 
thermodynamic derivation for the mean activity coefficient in such 
systems is given in ref 32. Very frequently, it is a good approx­
imation to assume that the activity of water does not differ ap­
preciably between two solutions. In that case, a simplified equation 
applies:32 

T±/7±,s = cs/[<c+)(c.>]'/2 
(8) 

(31) Donnan, F. Z. Electrochem. 1911, 17, ill. 
(32) Guggenheim, E. A.; Thermodynamics North Holland: Amsterdam, 

Holland, 1950. 
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a /Asm 

Figure 4. Ratio of the mean activity coefficients for 1:1 and 2:2 elec­
trolyte as defined by eq 8. The solid lines are the Poisson-Boltzmann 
results, the circles are the grand canonical Monte Carlo data. 
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Figure 5. The ratio of the mean activity coefficient defined by eq 8 as 
a function of radius R. Open circles are the Monte Carlo results for es 
= 0.0515 mol dm"3 and filled circles for cs = 0.124 mol dm"3. The solid 
line is the prediction of the Poisson-Boltzmann theory for cs = 0.0515 
mol dm"3 and the dashed line for cs = 0.124 mol dm"3. 

where y± is the mean activity coefficient of the electrolyte enclosed 
in a cavity and y± s, again, is the mean activity coefficient of the 
external (bulk) solution. This expression is exact if the net osmotic 
pressure in the system is zero. In this work the ratio of the activity 
coefficients 7±/7± |S as given by eq 8 is evaluated and presented 
in Figures 4 and 5. 

Equation 8, with 7 ± s = 1, has also been derived by using the 
Poisson-Boltzmann equation33 to describe the mean activity 
coefficient of the electrolyte in polyelectrolyte-electrolyte mixtures. 
Later, a more general derivation based on the density functional 
theory was presented.28 Recently, another expression for the y±, 
valid within the framework of the Poisson-Boltzmann equation, 
has been proposed.17 The new equation seems to yield numerical 
results different from those of 8. The ratio given by the r.h.s. of 
eq 8 (7±/Y± I S) is presented in Figure 4 as a function of the surface 
charge density a. As expected from the previous consideration 
of Figure 2, there is good agreement between the two different 
methods for 1:1 electrolyte. In contrast, the methods sharply 
disagree in the evaluation of the same quantity for 2:2 electrolyte 
in the capillary. The cs/[(c+) (c.)]1/2 ratio, evaluate by the Monte 
Carlo method, is considerably lower than predicted by the Pois­
son-Boltzmann equation even at the moderate charge densities. 

Another way to present these results is to evaluate the exclusion 
coefficient, here defined as 

r = (c, - c8')A, (9) 

Due to the negatively charged walls of the cavity, one would expect 
some of the negative ions to be expelled out of the capillary; that 
is, the inside concentration (c_) = c,' should be smaller than the 
bulk cs. This is analogous to the Donnan effect in colloidal or 
polyelectrolyte solutions.31"33 The results for c,' given in Table 
I corroborate these expectations. The Monte Carlo coefficient, 
eq 9, is, however, much smaller than that obtained from the 
Poisson-Boltzmann approximation. Due to the intense interionic 
correlations between divalent ions, discussed already with respect 

(33) Marcus, R. A. J. Chem. Phys. 1955, 23, 1057. 

to Figure 3, there is always more electrolyte present in the cavity 
than one would expect on the basis of the popular mean-field 
theory, i.e., the Poisson-Boltzmann equation. 

More results demonstrating the breakdown of the conventional 
Poisson-Boltzmann theory for 2:2 electrolyte are presented in 
Figure 5. The ratio that approximates 7±/Y±,S is here given as 
a function of the parameter R, where R + a/2 is the radius of 
the cylindrical capillary. The solid line represents the Poisson-
Boltzmann results and circles are again the grand canonical Monte 
Carlo data. As is shown in Figure 5, the values of the cj 
[(c+)(c-)yi2 evaluated by the computer experiment get smaller 
for this choice of geometry, while the Poisson-Boltzmann results 
increase, with decreasing radius of the capillary. Since in the 
Poisson-Boltzmann model ions have zero diameters, the two sets 
of data are not strictly comparable. In any case, as a result of 
the mean-field approximation, too many ions are squeezed out 
of the capillary. At higher concentrations, higher surface charge 
densities, or for thinner pores, a complicated interplay of the 
excluded volume and electrostatic effects may take place. The 
Monte Carlo results for higher electrolyte concentrations (runs 
10 and 11) are presented in Figure 5 as filled circles and the 
predictions of the Poisson-Boltzmann theory as a broken line. 

We note that these simulations are relatively demanding in 
terms of computer time. A large number of particles (more than 
1000) are needed to have at least 30 co-ions in the capillary and 
to obtain meaningful statistics. For example, a fully equilibrated 
run may require 5-6 h of CPU time on the CRAY X-MP/14 
computer. This fact prevents immediate extension of our calcu­
lation to investigate the very interesting region of small radius 
R. We intend to present results for both charged and uncharged 
microcapillaries with a radius R of only a few ionic diameters in 
a separate study. 

4. Conclusions 
Numerical results for 1:1 electrolyte enclosed in a cylindrical 

cavity and in thermodynamic equilibrium with an external elec­
trolyte solution of the same chemical composition confirm that 
the Poisson-Boltzmann equation retains its utility for solutions 
with monovalent counterions and at moderate charge densities. 
For a typical ion-exchange resin of technological importance, the 
surface charge density a may be around 0.5 C/m2,n which is 
higher than studied in this work and the results of the mean-field 
approximation are expected to be even less reliable in this case. 
The simulation results for 2:2 electrolyte show important effects 
of the ion-ion correlations neglected by the Poisson-Boltzmann 
theory.18"22 The results of the latter approximation are not only 
quantitatively but also qualitatively incorrect. This has important 
implications for further studies of the electrokinetic and other 
phenomena such as electrofiltration or ion exchange. One par­
ticularly interesting case is when mono- and divalent counterions 
compete to enter into the charged capillary.12 In view of the strong 
correlations between ions, some of the conclusions deduced from 
the classical Poisson-Boltzmann theory may have to be modified. 
Given the time-consuming nature of the computer simulations, 
some of the very successful theories of the electrical double layer, 
such as the hyper-netted chain (HNC) approximation,34,35 should 
be adapted for this problem. The results also show that the 
behavior of cylindrical systems in many aspects is parallel to that 
of the simpler planar electrical double layers.18"21 A breakdown 
of the Poisson-Boltzmann equation is suggested also by a recent 
Brownian dynamic simulation of the electrolyte between two 
charged planar surfaces.36 

Physical theories always combine simplifications of the model 
with the approximations that are of statistical-mechanical origin. 
Though the deviations from the mean-field theory observed above 
are probably important, they only represent a part of the story, 
fhe second part involves the physical model, which ignores the 
discrete nature of the surface charges, the granularity of the 

(34) Kjellander, R.; Marcelja, S. Chem. Phys. Lett. 1987, 142, 485, and 
references therein. 

(35) Carnie, S. L. Mol. Phys. 1985, 54, 509. 
(36) Akesson, T.; Jonsson, B. J. Phys. Chem. 1985, 89, 2401. 
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solvent, and the effects of the dielectric boundary.19,34 In addition, 
an exact treatment of electrokinetic phenomena is very compli­
cated, notwithstanding the Poisson-Boltzmann equation; some 
radical approximations about the conductivity of the electrolyte 
in the cavity are usually accepted." In this context, a none-
quilibrium molecular dynamics study37,38 of such a system would 

(37) Bitsaris, I.; Magda, J. J.; Tirell, M.; Davis, H. T. J. Chem. Phys. 1987, 
87, 1733. 

be a real step forward toward a better understanding of these 
important phenomena. 
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Abstract: NMR spectroscopy has been used to monitor the quadrupolar relaxation and motional dynamics of 2H selectively 
incorporated into skeletal and side chain positions of the heme in sperm whale myoglobin. The hyperfme shifts of the heme 
resonances in paramagnetic states of myoglobin allow resolution of the signals of interest, and paramagnetic contributions 
to the observed line widths are shown to be insignificant. The 2H line widths for the skeletal positions of deuterohemin-reconstituted 
myoglobin yield a correlation time identical with that of overall protein tumbling (9 ns at 30 0C) and hence reflect an immobile 
heme group. The 2H NMR line widths of heme methyl groups exhibit motional narrowing indicative of very rapid internal 
rotation. Hence the methyl rotation is effectively decoupled from the overall protein tumbling, and the residual quadrupolar 
line width can be used directly to determine the protein tumbling rate. The 2H NMR lines from heme vinyl groups were found 
narrower than those from the heme skeleton. However, the range of quadrupolar coupling constants for sp2 hybridized C-2H 
bonds does not permit an unequivocal interpretation in terms of mobility. 

The importance of dynamics to protein function has been 
recognized for some time, and it is currently an area of consid­
erable research interest.2"4 Hemoproteins have received particular 
attention in this regard, as the X-ray structures of myoglobin5 

and hemoglobin6 reveal the necessity of structural fluctuations 
to allow for ligand access to the heme active site. Energy cal­
culations have shown that structure fluctuations in myoglobin 
make ligand access energetically realistic,7 and molecular dynamics 
calculations of amino acid residue fluctuations in cytochrome c 
have shown good agreement with residue mobility results derived 
from the temperature dependence of X-ray thermal factors.4,8 The 
degree of steric interaction with an amino acid side chain, and 
hence the rotational mobility, of one of the heme vinyl groups in 
hemoglobin has been implicated in the cooperativity effect in 
human hemoglobin.9 Several experimental methods have been 
employed to probe the great range of motional states in pro­
teins.2"4,10,11 One of the more versatile methods is NMR spec­
troscopy, which allows the characterization of the motions of 
specific atomic sites over a wide range of time scales. Analysis 
of relaxation rates such as T1 and T2 and the nuclear Overhauser 
effect (NOE) will yield motional information over a large range 
of rates.2,3,12,13 

Several NMR relaxation experiments have been carried out 
on myoglobin. Solution studies include 13C NMR at natural 
abundance,14"16 using isotopically enriched 13C methionines,17 2H 
NMR of 2H-labeled modified myoglobin,18 and proton NOEs.19,20 

Crystalline state NMR has been used with 13C-labeled methionines 
and 2H-labeled heme methyl and propionic acids.21"23 While 13C 
and 1H NMR relaxation experiments have furnished valuable 
insights into the dynamics of myoglobin, analysis of these ex­
periments is not simple; some problems are the inverse sixth power 
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dependence that the T1 's have on the internuclear distance, whose 
values are not known with precision, and the possibility of multiple 
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